MEASUREMENT OF THE THERMAL CONDUCTIVITY OF SUPERHEATED LIQUIDS

G. G. Spirin

The pulse method is used to study thermal conductivity of a number of organic liquids at atmospheric pressure. Measurements covered the region of superheated metastable states.

While the thermophysical properties of stable liquid states, in particular, the thermal conductivity, have been the object of a quite large number of studies, measurements in metastable liquid states are very few in number, and this state range is practically a "blank page" for experimental physicists. This situation is evidently connected with the experimental difficulties created by liquid instability on the saturation line.

The first experimental studies of the thermal conductivity of superheated liquids were reported in [1]. The authors studied the thermal conductivity of n-hexane and n-heptane at superheats from the equilibrium boiling point to 55°C and experimentally demonstrated the possibility of extrapolating thermal-conductivity data from the stable region beyond the saturation line.

The present study is a further investigation of the thermal conductivity of superheated liquids. Methodologically, it is a development of [2], which was an experimental study of the thermal activity of liquids in the metastable region. The method of [2] is based on the use of two voltage pulses acting on a resistive element located within the liquid under study. The first pulse, which we term the heating pulse, heats the resistive element and a thin layer of liquid adjacent to the element to a controlled temperature greater than the equilibrium boiling point of the liquid. Before the completion of this pulse, a second pulse is applied to the resistive element – the measurement pulse – by means of which the thermophysical parameter value is determined, using nonstationary measurement in an irregular thermal regime. The duration of the measurement pulse is significantly less than that of the heating pulse. Their ratio is chosen such that the temperature field generated by the heating pulse is "frozen" in comparison to the measurement-pulse temperature field. Another condition also affecting accuracy of the measurements is that the diffusion length of the heating-pulse temperature field must significantly exceed the corresponding characteristic of the measurement pulse. In that case it is justifiable to identify the resistive element temperature with the temperature of the liquid layer in which measurements are performed.

The transformation from measurement of thermal activity by the method described to determination of thermal conductivity is accomplished by replacing the planar resistive element with a linear one (fine wire). The experimental apparatus and technique remain unchanged; however, in the formulas of [2] we replace thermal activity by thermal conductivity (the thermal activity of the substrate by the thermal conductivity of the liquid under study). It should be noted that the method of nonstationary measurement in an irregular thermal regime by pulsed heating of a wire by an electrical current is quite well developed and studied (for example, in [3, 4]).

A necessary condition for study of superheated liquids with this method is the brevity of the measurement pulse. In this case the duration of the heating pulse can be set sufficiently low, with sufficiently rapid liquid heating, such that the liquid is superheated without boiling above the equilibrium boiling point. Since the duration of the measurement pulse is limited by the intrinsic heat capacity of the heat source, it is desirable to use a wire of limitingly small radius.

Platinum wires with a radius of 10^{-6} m were used. The probes constructed with these wires were described in [4]. Measurement and heating-pulse durations comprised $0.15 \cdot 10^{-3}$ and $15 \cdot 10^{-3}$ sec, respectively, i.e., their ratio was 1:100. The resistive elements had a length of 4-6 mm, and their maximum superheating during action of the measurement pulse did not exceed 5°C. Analytical grade toluene was used as a reference; its heat-capacity values in the stable region were used as a comparison [5].

UDC 536.22

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 3, pp. 445-449, September, 1978. Original article submitted September 19, 1977.

	0	Parame-	Temperature																
Liquid		ter mea-	20	40	60	80	100	110	120	130	140	150	160	170	180	190	200	210	220
		sarea	<u> </u>	1		<u> </u>					<u> </u>		<u> </u>			ļ	<u> </u>		<u> </u>
Benzene		$\lambda \times 10^3$	146	139	133	126	118	115	112	110	107	105	103	101					
	78	3	469	460	451	441	432	427											
		$\rho c \times 10^{-4}$	151	152	153	154	158	158											
Benzyl		λ×10 ³	139	134	130	126	1 2 3	121	119	117	115	113	111	109	107	105	103	101	9
chloride Bromo- benzene	179	3	460	461	452	443	435	430											
		pc×10-4	158	158	157	156	154	153											
		$\lambda \times 10^3$	112	108	104	99	95	9 3	92	90	89	87	86	85	84	82	81	80	7
	156	8	401	398	394	391	387	3 8 5											
		ρc×10−4	144	147	149	154	157	159											
Buty1 acetate		$\lambda \times 10^3$	139	134	128	123	118	115	112	110	107	104	102	99	96	9 3			
	126	З	483	473	464	454	445	440											
		$\rho c \times 10^{-4}$	167	167	168	168	168	168											
		$\lambda \times 10^3$	170	163	156	149	142	138	134	131	127	123	119	117	115	113	111	108	10
Dioxane	100	3	527	518	508	499	489	484											
		ρc×10−4	163	164	165	167	168	169											
		$\lambda \times 10^3$	140	136	132	128	125	123	121	119	117	115	113	111	109	107			
Styrene	145	8	464	456	448	440	432	428											
	1	ρc×10 ⁻⁴	154	153	152	151	149	149											
Carbon tetra- chloride		$\lambda \times 10^3$	104	100	95	90	86	85	83	81	79								
	77	3	367	358	349	342	331	327											
		ρc×10-4	129	128	128	129	127	126											
Trichlor- ethylene	Į	λ×103	112	106	100	94	88	85	82	79	76	74	71	68	65	63			
	90	3	395	385	375	366	357	35 2											
		pc×10-4	139	140	141	142	144	145		l									
1, 1, 2, 2-		$\lambda imes 10^3$	120	113	106	98	93	89	86	82	79	76	74	71	68	65	63		
chlor- ethane	146	В	418	408	397	387	376	3 72											
	[$\rho c \times 10^{-4}$	146	147	149	152	153	155	1										
Cyclo- hexane		$\lambda imes 10^3$	120	115	111	106	102	100	98	95	93	91							
	81	8	414	410	404	399	395	392											
		pc×10-4	143	146	147	150	152	153	Í			Í							
Ethyl- benzene		λ×10 ³	134	128	124	118	113	111	109	107	105	104	103	102	101	100	99		
	136	в	458	452	446	441	435	427											
	1	$oc \times 10^{-4}$	157	160	161	164	167	167											

TABLE 1. Thermophysical Properties of Liquids

The "instantaneous" temperature (resistance) of the resistive element in the measurement probe was determined through calculations from the condition of "instantaneous" balance of the bridge, but in contrast to [2], balance was achieved by varying the resistance of a potentiometer located outside the compensation probe. In this case, as the bridge is being balanced, the current in the measurement arm does not vary, and the heating of the resistive element in that arm remains the same as in the action of a pair of pulses, i.e., in the thermal-conductivity measurements.

The thermal conductivity of a number of organic liquids of analytical and chemically pure grades was studied. Measurement results are presented in Table 1. The measurement range began in the stable region; temperature changes were effected both by changing the temperature of the thermostatic vessel containing the liquid and by changing the power of the heating pulse. Table 1 also shows the equilibrium boiling temperature of the liquids studied (T_s) under the experimental conditions – atmospheric pressure.

In analyzing the measurement uncertainty, the following factors were considered: intrinsic heat capacity of the wire, finite length of the wire, uncertainty in compensation indication, and temperature field of heating pulse. In estimating the error generated by the first two factors, the results of [3] were used; the presence of a compensation difference circuit reducing measurement error was considered. The resulting maximum

Fig. 1. Thermal conductivity of benzyl chloride and toluene: 1) benzyl chloride; 2) toluene; 3) reference data on toluene [5]; T, °C; λ , W/m °K.

measurement error, without consideration of systematic error produced by uncertainty in the properties of the reference liquid, did not exceed 3%. Data scattering in the experiments did not exceed 2%.

The maximum liquid superheat in relation to normal boiling point reached 100°C (for benzene, dioxane, and trichloroethane). Factors permitting the achievement of such high superheating were the brevity of the heating, the small volume of the superheated liquid, and, finally, the small surface area of the wire bordering on the liquid. This surface serves as a source of artificial vapor-formation centers.

The thermal-conductivity measurement range was limited above by liquid boiling. The boiling process was clearly expressed. At the moment of boiling the wire temperature decreased sharply, after which irregular temperature oscillations were observed. As a rule, even when operating with one sensor, the boiling temperature was not reproducible for a sequence of identical pulses applied to the bridge, although for a train of 3-5 pulses reproducibility did occur often. This nonreproducibility complicated the thermal-conductivity study in the vicinity of the boiling temperature. Also noted was a rise in thermal conductivity before boiling. Figure 1 shows the results of thermal-conductivity measurements for benzyl chloride and toluene, including the preboiling region. The growth in thermal conductivity in this region is irregular in nature. This is evidently because even before explosive boiling, the liquid contains traces of nucleation accompanied by heat absorption. The presence of heat sinks in the liquid volume diminishes the temperature increase of the wire as it is heated somewhat, leading to measured heat-capacity values which are too high.

Results of thermal-conductivity studies in the metastable region show that the dependence of thermal conductivity on temperature is close to the analogous dependence on the saturation line, within the limits of experimental error. In particular, Fig. 1 compares experimental data for toluene with data from [5] characterizing the saturation line.

Together with thermal conductivity, Table 1 shows thermal activity (ε) values measured in accordance with [2] for the various liquids. The temperature range of these measurements is 20-110°C. For a number of liquids – benzene, cyclohexane, carbon tetrachloride, trichloroethane, and dioxane – the measurements encompassed the superheated state with a maximum heating above normal boiling point of about 30°C. The error in ε measurement, without consideration of systematic error in the properties of the reference liquid (toluene), does not exceed 2%.

It is evident from Table 1 that upon transition through the equilibrium boiling point the temperature dependences of the thermophysical characteristics studied maintains a smooth character; this fact confirms the validity of extrapolating experimental data from the stable region where it was obtained to the metastable region. This assumption is valid for sufficiently large penetration depths into the metastable region. However, there do remain unaccessible to the present study further removed and theoretically more interesting regions of the metastable state, including the spinodal region. This limitation exists because of liquid boiling on artificial vapor-formation centers.

The analysis of [6] reveals that suppression of boiling at such centers is possible upon realization of a shock heating of the metal wire more rapid than that used in the present study. This, in turn, presupposes the use of heat sources with lower intrinsic heat capacity, i.e., use of a wire of smaller radius (estimates indicate reduction by a factor of about three).

The possibilities of the method described are not limited to superheated liquids; it may be used to establish the temperature dependence of thermal conductivity and to study the thermal conductivity of liquid systems which do not tolerate lengthy stationary heating.

NOTATION

- ${\rm T}_{{\rm s}}$ is the equilibrium boiling temperature;
- λ is the conductivity;
- ε is the thermal activity coefficient;
- $\rho_{\rm c}$ is the volumetric heat capacity.

LITERATURE CITED

- 1. N. V. Bulanev, E. D. Nikitin, and V. P. Skripov, Inzh.-Fiz. Zh., 26, No.2 (1974).
- 2. B. I. Il'in, A. V. Gurskaya, V. F. Salokhin, and G. G. Spirin, Inzh.-Fiz. Zh., 29, No.4 (1975).
- 3. J. K. Horrocks and E. McLaughlin, Proc. Roy. Soc. (London), A273, 259 (1963).
- 4. B. I. Il'in, A. V. Gurskaya, V. F. Salokhin, and G. G. Spirin, Vysokomolek. Soed., A17, No. 8 (1975).
- 5. N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and R. P. Yurchak, Thermal Conductivity of Gases and Liquids (Reference Data) [in Russian], Moscow (1970).
- 6. V. P. Skripov, Metastable Liquids [in Russian], Nauka, Moscow (1972).

MEASUREMENT OF THERMAL DIFFUSIVITY OF MASSIVE METALLIC SPECIMENS BY THE PULSE METHOD

> L. D. Zagrebin, V. E. Zinov'ev, and V. A. Sipailov

UDC 536.212

A pulse method for measuring the thermal diffusivity of semi-infinite specimens is described. Results of thermal-diffusivity measurements on iron and tin are presented.

The present authors have previously described a pulse method of measuring the thermal diffusivity of metals [1, 2] useful for specimens of hemispherical form. For thin plane-parallel plates the well-known method presented by Parker et al. [3-5] is usually used. However, in many cases creation of specimens with such geometry is difficult, and it is of great interest to consider the possibility of using the pulse method for measurement of the thermal diffusivity of specimens of the simplest form - a semi-infinite mass. Use of powerful point-laser sources permits a quite simple solution of this problem in principle.

The general solution of the thermal-conductivity differential equation

$$\frac{\partial T(x, y, z, \tau)}{\partial \tau} = a \nabla^2 T(x, y, z, \tau)$$
(1)

for $-\infty < x$, y, $< \infty$, $0 < z < \infty$, and $\tau > 0$ with initial

$$\tau_0=0, \quad T(x, y, z, \tau)=0$$

and boundary

$$T(\infty, y, z, \tau) = T(x, \infty, z, \tau) = T(x, y, \infty, \tau) = 0,$$

$$\frac{\partial T(\pm \infty, y, z, \tau)}{\partial x} = \frac{\partial T(x, \pm \infty, z, \tau)}{\partial y} = \frac{\partial T(x, y, \infty, \tau)}{\partial z} = 0$$

conditions for an instantaneous heat source at a point (x_1, y_1, z_1) on the surface of a semi-infinite-mass specimen is given by the function [6, 7]

$$T(x, y, z, \tau; x_{i}, y_{i}, z_{i}) = \frac{q_{0}}{8(\pi a \tau)^{3/2} c_{p} \rho} \exp \left[-\frac{(x-x_{i})^{2} + (y-y_{i})^{2} + (z-z_{i})^{2}}{4a\tau}\right].$$
 (2)

S. M. Kirov Ural Polytechnic Institute. Izhev Mechanical Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 3, pp. 450-454, September, 1978. Original article submitted September 5, 1977.